Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.202
Filtrar
Mais filtros








Intervalo de ano de publicação
2.
JCO Precis Oncol ; 8: e2300274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38691813

RESUMO

PURPOSE: Patients with residual invasive bladder cancer after neoadjuvant chemotherapy (NAC) and radical cystectomy have a poor prognosis. Data on adjuvant therapy for these patients are conflicting. We sought to evaluate the natural history and genomic landscape of chemotherapy-resistant bladder cancer to inform patient management and clinical trials. METHODS: Data were collected on patients with clinically localized muscle-invasive urothelial bladder cancer treated with NAC and cystectomy at our institution between May 15, 2001, and August 15, 2019, and completed four cycles of gemcitabine and cisplatin NAC, excluding those treated with adjuvant therapies. Survival was estimated using the Kaplan-Meier method, and multivariable Cox proportional hazards models were used to identify predictors of recurrence-free survival (RFS). Genomic alterations were identified in targeted exome sequencing (Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets) data from post-NAC specimens from a subset of patients. RESULTS: Lymphovascular invasion (LVI) was the strongest predictor of RFS (hazard ratio, 2.15 [95% CI, 1.37 to 3.39]) on multivariable analysis. Patients with ypT2N0 disease without LVI had a significantly prolonged RFS compared with those with LVI (70% RFS at 5 years). Lymph node yield did not affect RFS. Among patients with sequencing data (n = 101), chemotherapy-resistant tumors had fewer alterations in DNA damage response genes compared with tumors from a publicly available chemotherapy-naïve cohort (15% v 29%; P = .021). Alterations in CDKN2A/B were associated with shorter RFS. PIK3CA alterations were associated with LVI. Potentially actionable alterations were identified in more than 75% of tumors. CONCLUSION: Although chemotherapy-resistant bladder cancer generally portends a poor prognosis, patients with organ-confined disease without LVI may be candidates for close observation without adjuvant therapy. The genomic landscape of chemotherapy-resistant tumors is similar to chemotherapy-naïve tumors. Therapeutic opportunities exist for targeted therapies as adjuvant treatment in chemotherapy-resistant disease.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Masculino , Feminino , Idoso , Resistencia a Medicamentos Antineoplásicos/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Gencitabina , Terapia Neoadjuvante , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Cisplatino/uso terapêutico , Genômica , Cistectomia
3.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722217

RESUMO

Animal evolution is influenced by the emergence of new cell types, yet our understanding of this process remains elusive. This prompts the need for a broader exploration across diverse research organisms, facilitated by recent breakthroughs, such as gene editing tools and single-cell genomics. Essential to our understanding of cell type evolution is the accurate identification of homologous cells. We delve into the significance of considering developmental ontogeny and potential pitfalls when drawing conclusions about cell type homology. Additionally, we highlight recent discoveries in the study of cell type evolution through the application of single-cell transcriptomics and pinpoint areas ripe for further exploration.


Assuntos
Evolução Biológica , Análise de Célula Única , Animais , Análise de Célula Única/métodos , Humanos , Linhagem da Célula/genética , Transcriptoma/genética , Genômica , Edição de Genes
4.
Genes Chromosomes Cancer ; 63(5): e23238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722224

RESUMO

Pleomorphic rhabdomyosarcoma (PRMS) is a rare and highly aggressive sarcoma, occurring mostly in the deep soft tissues of middle-aged adults and showing a variable degree of skeletal muscle differentiation. The diagnosis is challenging as pathologic features overlap with embryonal rhabdomyosarcoma (ERMS), malignant Triton tumor, and other pleomorphic sarcomas. As recurrent genetic alterations underlying PRMS have not been described to date, ancillary molecular diagnostic testing is not useful in subclassification. Herein, we perform genomic profiling of a well-characterized cohort of 14 PRMS, compared to a control group of 23 ERMS and other pleomorphic sarcomas (undifferentiated pleomorphic sarcoma and pleomorphic liposarcoma) using clinically validated DNA-targeted Next generation sequencing (NGS) panels (MSK-IMPACT). The PRMS cohort included eight males and six females, with a median age of 53 years (range 31-76 years). Despite similar tumor mutation burdens, the genomic landscape of PRMS, with a high frequency of TP53 (79%) and RB1 (43%) alterations, stood in stark contrast to ERMS, with 4% and 0%, respectively. CDKN2A deletions were more common in PRMS (43%), compared to ERMS (13%). In contrast, ERMS harbored somatic driver mutations in the RAS pathway and loss of function mutations in BCOR, which were absent in PRMS. Copy number variations in PRMS showed multiple chromosomal arm-level changes, most commonly gains of chr17p and chr22q and loss of chr6q. Notably, gain of chr8, commonly seen in ERMS (61%) was conspicuously absent in PRMS. The genomic profiles of other pleomorphic sarcomas were overall analogous to PRMS, showing shared alterations in TP53, RB1, and CDKN2A. Overall survival and progression-free survival of PRMS were significantly worse (p < 0.0005) than that of ERMS. Our findings revealed that the molecular landscape of PRMS aligns with other adult pleomorphic sarcomas and is distinct from that of ERMS. Thus, NGS assays may be applied in select challenging cases toward a refined classification. Finally, our data corroborate the inclusion of PRMS in the therapeutic bracket of pleomorphic sarcomas, given that their clinical outcomes are comparable.


Assuntos
Rabdomiossarcoma Embrionário , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/patologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma/classificação , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Biomarcadores Tumorais/genética , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases
5.
Nat Commun ; 15(1): 3844, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714690

RESUMO

Multiple myeloma (MM) is a heterogeneous disease characterized by frequent MYC translocations. Sporadic MYC activation in the germinal center of genetically engineered Vk*MYC mice is sufficient to induce plasma cell tumors in which a variety of secondary mutations are spontaneously acquired and selected over time. Analysis of 119 Vk*MYC myeloma reveals recurrent copy number alterations, structural variations, chromothripsis, driver mutations, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC) mutational activity, and a progressive decrease in immunoglobulin transcription that inversely correlates with proliferation. Moreover, we identify frequent insertional mutagenesis by endogenous retro-elements as a murine specific mechanism to activate NF-kB and IL6 signaling pathways shared with human MM. Despite the increased genomic complexity associated with progression, advanced tumors remain dependent on MYC. In summary, here we credential the Vk*MYC mouse as a unique resource to explore MM genomic evolution and describe a fully annotated collection of diverse and immortalized murine MM tumors.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Animais , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transformação Celular Neoplásica/genética , Mutação , Transdução de Sinais/genética , Camundongos Transgênicos , NF-kappa B/metabolismo , NF-kappa B/genética , Mutagênese Insercional , Variações do Número de Cópias de DNA/genética , Genômica/métodos , Translocação Genética
6.
Hum Genomics ; 18(1): 45, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720401

RESUMO

BACKGROUND: Implementing genomic sequencing into newborn screening programs allows for significant expansion in the number and scope of conditions detected. We sought to explore public preferences and perspectives on which conditions to include in genomic newborn screening (gNBS). METHODS: We recruited English-speaking members of the Australian public over 18 years of age, using social media, and invited them to participate in online focus groups. RESULTS: Seventy-five members of the public aged 23-72 participated in one of fifteen focus groups. Participants agreed that if prioritisation of conditions was necessary, childhood-onset conditions were more important to include than later-onset conditions. Despite the purpose of the focus groups being to elicit public preferences, participants wanted to defer to others, such as health professionals or those with a lived experience of each condition, to make decisions about which conditions to include. Many participants saw benefit in including conditions with no available treatment. Participants agreed that gNBS should be fully publicly funded. CONCLUSION: How many and which conditions are included in a gNBS program will be a complex decision requiring detailed assessment of benefits and costs alongside public and professional engagement. Our study provides support for implementing gNBS for treatable childhood-onset conditions.


Assuntos
Triagem Neonatal , Humanos , Recém-Nascido , Austrália , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Genômica , Grupos Focais , Opinião Pública , Testes Genéticos , Adulto Jovem
7.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732608

RESUMO

Flavonoids exert vasculoprotective effects in humans, but interindividual variability in their action has also been reported. This study aims to identify genes that are associated with vascular health effects of flavonoids and whose polymorphisms could explain interindividual variability in response to their intake. Applying the predetermined literature search criteria, we identified five human intervention studies reporting positive effects of flavonoids on vascular function together with global genomic changes analyzed using microarray methods. Genes involved in vascular dysfunction were identified from genome-wide association studies (GWAS). By extracting data from the eligible human intervention studies, we obtained 5807 differentially expressed genes (DEGs). The number of identified upstream regulators (URs) varied across the studies, from 227 to 1407. The search of the GWAS Catalog revealed 493 genes associated with vascular dysfunction. An integrative analysis of transcriptomic data with GWAS genes identified 106 candidate DEGs and 42 candidate URs, while subsequent functional analyses and a search of the literature identified 20 top priority candidate genes: ALDH2, APOE, CAPZA1, CYP11B2, GNA13, IL6, IRF5, LDLR, LPL, LSP1, MKNK1, MMP3, MTHFR, MYO6, NCR3, PPARG, SARM1, TCF20, TCF7L2, and TNF. In conclusion, this integrated analysis identifies important genes to design future nutrigenetic studies for development of precision nutrition for polyphenols.


Assuntos
Flavonoides , Estudo de Associação Genômica Ampla , Nutrigenômica , Humanos , Nutrigenômica/métodos , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Medicina de Precisão/métodos , Genômica/métodos
8.
Genet Sel Evol ; 56(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698347

RESUMO

BACKGROUND: The theory of "metafounders" proposes a unified framework for relationships across base populations within breeds (e.g. unknown parent groups), and base populations across breeds (crosses) together with a sensible compatibility with genomic relationships. Considering metafounders might be advantageous in pedigree best linear unbiased prediction (BLUP) or single-step genomic BLUP. Existing methods to estimate relationships across metafounders Γ are not well adapted to highly unbalanced data, genotyped individuals far from base populations, or many unknown parent groups (within breed per year of birth). METHODS: We derive likelihood methods to estimate Γ . For a single metafounder, summary statistics of pedigree and genomic relationships allow deriving a cubic equation with the real root being the maximum likelihood (ML) estimate of Γ . This equation is tested with Lacaune sheep data. For several metafounders, we split the first derivative of the complete likelihood in a term related to Γ , and a second term related to Mendelian sampling variances. Approximating the first derivative by its first term results in a pseudo-EM algorithm that iteratively updates the estimate of Γ by the corresponding block of the H-matrix. The method extends to complex situations with groups defined by year of birth, modelling the increase of Γ using estimates of the rate of increase of inbreeding ( Δ F ), resulting in an expanded Γ and in a pseudo-EM+ Δ F algorithm. We compare these methods with the generalized least squares (GLS) method using simulated data: complex crosses of two breeds in equal or unsymmetrical proportions; and in two breeds, with 10 groups per year of birth within breed. We simulate genotyping in all generations or in the last ones. RESULTS: For a single metafounder, the ML estimates of the Lacaune data corresponded to the maximum. For simulated data, when genotypes were spread across all generations, both GLS and pseudo-EM(+ Δ F ) methods were accurate. With genotypes only available in the most recent generations, the GLS method was biased, whereas the pseudo-EM(+ Δ F ) approach yielded more accurate and unbiased estimates. CONCLUSIONS: We derived ML, pseudo-EM and pseudo-EM+ Δ F methods to estimate Γ in many realistic settings. Estimates are accurate in real and simulated data and have a low computational cost.


Assuntos
Cruzamento , Modelos Genéticos , Linhagem , Animais , Funções Verossimilhança , Cruzamento/métodos , Algoritmos , Ovinos/genética , Genômica/métodos , Simulação por Computador , Masculino , Feminino , Genótipo
9.
Genet Sel Evol ; 56(1): 34, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698373

RESUMO

Metafounders are a useful concept to characterize relationships within and across populations, and to help genetic evaluations because they help modelling the means and variances of unknown base population animals. Current definitions of metafounder relationships are sensitive to the choice of reference alleles and have not been compared to their counterparts in population genetics-namely, heterozygosities, FST coefficients, and genetic distances. We redefine the relationships across populations with an arbitrary base of a maximum heterozygosity population in Hardy-Weinberg equilibrium. Then, the relationship between or within populations is a cross-product of the form Γ b , b ' = 2 n 2 p b - 1 2 p b ' - 1 ' with p being vectors of allele frequencies at n markers in populations b and b ' . This is simply the genomic relationship of two pseudo-individuals whose genotypes are equal to twice the allele frequencies. We also show that this coding is invariant to the choice of reference alleles. In addition, standard population genetics metrics (inbreeding coefficients of various forms; FST differentiation coefficients; segregation variance; and Nei's genetic distance) can be obtained from elements of matrix Γ .


Assuntos
Frequência do Gene , Genética Populacional , Modelos Genéticos , Animais , Genética Populacional/métodos , Heterozigoto , Alelos , Genômica/métodos , Genótipo , Genoma
10.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734623

RESUMO

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Assuntos
Actinidia , Genoma Bacteriano , Genômica , Filogenia , Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , China , Actinidia/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia
11.
Sci Rep ; 14(1): 10803, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734771

RESUMO

The northern giant hornet Vespa mandarinia (NGH) is a voracious predator of other insect species, including honey bees. NGH's native range spans subtropical and temperate regions across much of east and southeast Asia and, in 2019, exotic populations of the species were discovered in North America. Despite this broad range and invasive potential, investigation of the population genomic structure of NGH across its native and introduced ranges has thus far been limited to a small number of mitochondrial samples. Here, we present analyses of genomic data from NGH individuals collected across the species' native range and from exotic individuals collected in North America. We provide the first survey of whole-genome population variation for any hornet species, covering this species' native and invasive ranges, and in doing so confirm likely origins in Japan and South Korea for the two introductions. We additionally show that, while this introduced population exhibited strongly elevated levels of inbreeding, these signatures of inbreeding are also present in some long-standing native populations, which may indicate that inbreeding depression alone is insufficient to prevent the persistence of NGH populations. As well as highlighting the importance of ongoing monitoring and eradication efforts to limit the spread of this species outside of its natural range, our data will serve as a foundational database for future genomic studies into introduced hornet populations.


Assuntos
Espécies Introduzidas , Vespas , Animais , América do Norte , Vespas/genética , Genética Populacional , Genômica/métodos , Variação Genética , Endogamia , Genoma de Inseto
12.
Commun Biol ; 7(1): 516, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693292

RESUMO

The success of deep learning in various applications depends on task-specific architecture design choices, including the types, hyperparameters, and number of layers. In computational biology, there is no consensus on the optimal architecture design, and decisions are often made using insights from more well-established fields such as computer vision. These may not consider the domain-specific characteristics of genome sequences, potentially limiting performance. Here, we present GenomeNet-Architect, a neural architecture design framework that automatically optimizes deep learning models for genome sequence data. It optimizes the overall layout of the architecture, with a search space specifically designed for genomics. Additionally, it optimizes hyperparameters of individual layers and the model training procedure. On a viral classification task, GenomeNet-Architect reduced the read-level misclassification rate by 19%, with 67% faster inference and 83% fewer parameters, and achieved similar contig-level accuracy with ~100 times fewer parameters compared to the best-performing deep learning baselines.


Assuntos
Aprendizado Profundo , Genômica , Genômica/métodos , Biologia Computacional/métodos , Humanos , Redes Neurais de Computação
13.
BMC Genomics ; 25(1): 430, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693501

RESUMO

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Assuntos
Galinhas , Genoma , Anotação de Sequência Molecular , Animais , Galinhas/genética , Composição de Bases , Telômero/genética , Cromossomos/genética , Genômica/métodos
14.
J Transl Med ; 22(1): 414, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693538

RESUMO

Primary testicular lymphoma (PTL) is a rare lymphoma predominantly occurring in the elderly male population. It is characterized by a limited response to treatment and a heightened tendency towards relapse. Histologically, approximately 90% of PTL cases are classified as diffuse large B-cell lymphomas (DLBCL). Genetic features of PTL were delineated in a limited scope within several independent studies. Some of the articles which analyzed the genetic characterization of DLBCL have incorporated PTL samples, but these have been constrained by small sample sizes. In addition, there have been an absence of independent molecular typing studies of PTL. This report summarizes the common mutational features, copy number variations (CNVs) and molecular typing of PTL patients, based on whole-exome sequencing (WES) conducted on a cohort of 25 PTL patients. Among them, HLA, CDKN2A and MYD88 had a high mutation frequency. In addition, we found two core mutational characteristics in PTL including mutation in genes linked to genomic instability (TP53 and CDKN2A) and mutation in immune-related genes (HLA, MYD88, CD79B). We performed molecular typing of 25 PTL patients into C1 subtype with predominantly TP53 mutations and C2 subtype with predominantly HLA mutations. Notably, mutations in the TP53 gene predicted a poor outcome in most types of lymphomas. However, the C1 subtype, dominated by TP53 mutations, had a better prognosis compared to the C2 subtype in PTL. C2 subtype exhibited a worse prognosis, aligning with our finding that the mechanism of immune escape in PTL was primarily the deletions of HLA rather than PD-L1/PD-L2 alterations, a contrast to other DLBCLs. Moreover, we calculated the tumor mutation burden (TMB) and identified that TMB can predict prognosis and recurrence rate in PTL. Our study underscores the significance of molecular typing in PTL based on mutational characteristics, which plays a crucial role in prognostication and guiding therapeutic strategies for patients.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Mutação , Neoplasias Testiculares , Humanos , Masculino , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Neoplasias Testiculares/classificação , Mutação/genética , Variações do Número de Cópias de DNA/genética , Idoso , Pessoa de Meia-Idade , Linfoma/genética , Linfoma/patologia , Linfoma/classificação , Sequenciamento do Exoma , Idoso de 80 Anos ou mais , Adulto , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/classificação
16.
Ter Arkh ; 96(3): 205-211, 2024 Apr 16.
Artigo em Russo | MEDLINE | ID: mdl-38713033

RESUMO

The COVID-19 pandemic has highlighted pressing challenges in biomedical research methodology. It has become obvious that the rapid and effective development of treatments for "new" viral infections is impossible without the coordination of interdisciplinary research and in-depth analysis of data obtained within the framework of the post-genomic paradigm. Presents the results of a systematic computer analysis of 290,000 scientific articles on COVID-19, with an emphasis on the results of post-genomic studies of SARS-CoV-2. The futility of the overly simplified approach, which considers only one "most important receptor protein", only one "key virus gene", etc., is shown. It is shown how post-genomic technologies will make it possible to find informative biomarkers of severe coronavirus infection, including those based on complex immune disorders associated with COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Tratamento Farmacológico da COVID-19 , Genômica/métodos , Antivirais/uso terapêutico , Antivirais/farmacologia
17.
Theor Appl Genet ; 137(6): 122, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713254

RESUMO

KEY MESSAGE: By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.


Assuntos
Mapeamento Cromossômico , Mariposas , Oryza , Locos de Características Quantitativas , Oryza/genética , Oryza/parasitologia , Oryza/imunologia , Animais , Mariposas/fisiologia , Polimorfismo de Nucleotídeo Único , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Genômica/métodos , Fenótipo , Multiômica
18.
Cell Genom ; 4(5): 100555, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38697121

RESUMO

The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Genoma Humano , Genômica/métodos , Animais
19.
Curr Protoc ; 4(5): e1046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717471

RESUMO

Whole-genome sequencing is widely used to investigate population genomic variation in organisms of interest. Assorted tools have been independently developed to call variants from short-read sequencing data aligned to a reference genome, including single nucleotide polymorphisms (SNPs) and structural variations (SVs). We developed SNP-SVant, an integrated, flexible, and computationally efficient bioinformatic workflow that predicts high-confidence SNPs and SVs in organisms without benchmarked variants, which are traditionally used for distinguishing sequencing errors from real variants. In the absence of these benchmarked datasets, we leverage multiple rounds of statistical recalibration to increase the precision of variant prediction. The SNP-SVant workflow is flexible, with user options to tradeoff accuracy for sensitivity. The workflow predicts SNPs and small insertions and deletions using the Genome Analysis ToolKit (GATK) and predicts SVs using the Genome Rearrangement IDentification Software Suite (GRIDSS), and it culminates in variant annotation using custom scripts. A key utility of SNP-SVant is its scalability. Variant calling is a computationally expensive procedure, and thus, SNP-SVant uses a workflow management system with intermediary checkpoint steps to ensure efficient use of resources by minimizing redundant computations and omitting steps where dependent files are available. SNP-SVant also provides metrics to assess the quality of called variants and converts between VCF and aligned FASTA format outputs to ensure compatibility with downstream tools to calculate selection statistics, which are commonplace in population genomics studies. By accounting for both small and large structural variants, users of this workflow can obtain a wide-ranging view of genomic alterations in an organism of interest. Overall, this workflow advances our capabilities in assessing the functional consequences of different types of genomic alterations, ultimately improving our ability to associate genotypes with phenotypes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Predicting single nucleotide polymorphisms and structural variations Support Protocol 1: Downloading publicly available sequencing data Support Protocol 2: Visualizing variant loci using Integrated Genome Viewer Support Protocol 3: Converting between VCF and aligned FASTA formats.


Assuntos
Polimorfismo de Nucleotídeo Único , Software , Fluxo de Trabalho , Polimorfismo de Nucleotídeo Único/genética , Biologia Computacional/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Sequenciamento Completo do Genoma/métodos
20.
Sci Data ; 11(1): 466, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719829

RESUMO

Decoding complex plant omics is essential for advancing our understanding of plant biology, evolution, and breeding as well as for practical applications in agriculture, conservation, and biotechnology. The advent of Next-Generation Sequencing (NGS) has revolutionized global plant genomic research, offering high-throughput, cost-effective, and accurate methods for generating genomic data. However, challenges still exist that suggest an entirely unresolved genome characterized by high heterozygosity, extensive repetitive sequences, and complex ploidy features. In addition, individual investigation of genomic information from various genetic resources is essential for omics research, as there are differences in traits within a single breed beyond a species due to the uniqueness of sequence variation. This article provides high-quality genomic and transcriptomic insights targeted at the agronomical background.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Plantas/genética , Genômica , Disseminação de Informação , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA